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By embedding the structure seminvariant T and symmetry-related variants of T in suitable structure in- 
variants Q the values of which, because of the space-group-dependent relations among the phases, are 
related to T, one reduces the probabilistic theory of the structure seminvariants to that of the structure 
invariants, which is well developed. The structure invariants Q are said to be extensions of the structure 
seminvariant T. 

1. Introduction 

It is assumed that the reader is familiar with the idea of 
'neighborhood of a structure invariant or semin- 
variant', the 'neighborhood principle', and the roles 
these concepts play in the probabilistic theory of the 
structure invariants and seminvariants (see, for 
example, Hauptman, 1975, 1976; Green & Hauptman, 
1976). Systems of neighborhoods of the structure 
invariants are now well known (see, for example, 
Hauptman, 1977a,b), and neighborhoods for selected 
structure seminvariants have also been identified 
(see, for example, Green & Hauptman, 1978). 

The major goal of the present paper is to show how 
to determine in a systematic and unambiguous way 
neighborhoods of the structure seminvariants in 
general by exploiting the symmetries deriving from the 
space groups. The method is to embed a given structure 
seminvariant T and its symmetry-related variants in 
suitable structure invariants Q to which T is related 
via the space-group symmetries. Then the neighbor- 
hoods of T are determined by the known neighborhoods 
of Q. The structure invariant Q is said to be an 
extension of the structure seminvariant T. Recently 
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secured methods may then be employed to derive 
suitable conditional probability distributions leading to 
estimates of the structure seminvariants in terms of the 
magnitudes in their neighborhoods. 

The method will be illustrated by examples in space 
groups P1, P i ,  P2~ and P2~2~2~ but is clearly of 
sufficient generality to be applicable to structure 
seminvariants in general. 

Although the idea of embedding a structure semin- 
variant in an appropriate structure invariant is not new 
(Giacovazzo, 1975; Hauptman, 1976; Green & 
Hauptman, 1978) the present paper appears to be the 
first in which the interplay between the space-group 
symmetries and the neighborhood concept is syste- 
matically exploited. However, see Hauptman (1976) 
and Giacovazzo (1977b) for different techniques for 
obtaining neighborhoods of the structure seminvariants. 

2. The second neighborhoods of the three-phase 
structure invariant in PI and PI 

The linear combination of three phases 

T--- ¢Ph + ~Ok + tpj, 

is a structure invariant if 

h + k + l = 0 .  

(2.1) 

(2.2) 
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The first neighborhood of T consists of the three magni- 
tudes 

IEhl, IEkl, IEll. (2.3) 

Embed T in a quintet (five-phase structure invariant) Q 
by means of 

Q = ~Ph + (Pk -t- (Pl q- (Pq -t- ~O q (2.4) 

or, because of (2.1), 

Q = T + ~pq + <p_q, (2.5) 

where q is an arbitrary reciprocal vector, so that, in 
view of (2.2), Q is a structure invariant and 

Q = T. (2.6) 

The second neighborhood of T is defined to be the 
second neighborhood of Q, which is well known 
(Schenk, 1975; Hauptman, 1977b). Although Q is a 
special quintet, its second neighborhood is obtained 
formally in the same way as if it were general. However, 
because of its special character, not all magnitudes in 
the second neighborhood are distinct. Thus the second 
neighborhood of T consists of the three magnitudes 
(2.3) and the additional seven magnitudes 

IEql ;  (2.7) 

IEh+ql, IEk+ql, IEl+q[; (2.8) 

IEh_ql, IEk_ql, IEl_ql. (2.9) 

Since q is an arbitrary reciprocal vector, there are many 
second neighborhoods. Strictly speaking, the structure 
factor magnitude IEq_ql = IE01 should be added to the 
sets (2.7), (2.8) and (2.9). However, IE01 has a fixed 
value, independent of h, k, I and q, and thus cannot be a 
proper random variable; it is therefore omitted from the 
second neighborhood. 

Not only does the argument given in the preceding 
paragraph define the second neighborhood of T, but 
(2.6) and the known relation between Q and the 
magnitudes of its second neighborhood serve to predict, 
in a qualitative way, what the relation between T and 
the ten magnitudes (2.3) and (2.7)-(2.9) must be. Thus, 
if all ten magnitudes (2.3), (2.7)-(2.9) are large then, 
with near certainty, 

T ~_ 0. (2.10) 

If, on the other hand, (2.7) is very large and the three 
elements of one of the sets (2.8), (2.9) are all very large 
and of the other all very small, then 

T ~ 0 .  (2.11) 

Finally, it turns out, as shown elsewhere (Green, 
Hauptman & Kruger, 1978), that if (2.7) is small and 
the six magnitudes (2.8), (2.9) are all large, then (2.11) 
again holds. The relation (2.11) is particularly likely to 
be valid, and the deviation of T from 0 particularly 
likely to be large, if the required conditions hold for 

several reciprocal vectors q and if the three magnitudes 
(2.3) are only moderately large (i.e. not extremely 
large). The qualitative relation of these results to the 
MDKS formula (Hauptman, 1972) and some recent 
results of Giacovazzo (1976; 1977a) should be noted. 

It should be stressed that the argument of the preced- 
ing paragraph is heuristic only, especially in view of the 
omission of I E01, the duplication of certain magnitudes 
in the second neighborhood of the special quintet, Q, 
etc.  The purpose of embedding the structure semin- 
variant T in the structure invariant Q, the value of 
which is simply related to that of T, is simply to identify 
the magnitudes IEI on which the value of T primarily 
depends, i.e. the neighborhoods of T. There remains the 
task of deriving the conditional probability distribution 
of T, given the magnitudes IEI in any of its neighbor- 
hoods, employing for this purpose techniques described 
elsewhere (see, for example, Hauptman, 1975). In the 
favorable case that the variance of a distribution 
happens to be small, one obtains a reliable estimate for 
Tin terms of the chosen magnitudes IEI. 

3. The first two neighborhoods of the three-phase 
structure seminvariant in P21 

3.1.  T h e  e x t e n s i o n s  

The linear combination of three phases, 

T o = tph,k, 6 + ~0h21,j 2 + ~0h,k~t ~, (3. I) 

is a structure seminvariant in P21 if and only if 

k I + k 2 + k a = 0 (3.2) 
and 

h I + h 2 + h 3 - I  1 + l 2 + l a -  0 (rood 2), (3.3) 

i.e. h~ + h 2 + h a and 11 + l 2 + l 3 are even integers. It 
follows that the eight integers +h~ _+h 2 _+h 3 and the eight 
integers +l~ +l 2 +t 3 are also even, so that the linear 
combinations of three phases, 

TI = q~h¢,,7, + ~Oh~,212 + ~Oh3k313, (3.4) 

7 2 = ~Ohikllt q- ~0~2k3 2 -1- ~Oh3k313 , (3 .5)  
and 

T3 = q~h,k,t, + ~Oh~,2t 2 + ~O~Q 3, (3.6) 

are also structure seminvariants. Furthermore, because 
of the space-group-dependent relations among the 
phases, T O is related to T 1, T 2 and T 3 by means of 

T o = T i + ~z(½ - -  ½ cos zrki), i = 1, 2, 3. (3.7) 

One embeds the structure seminvariants Tj in suitable 
quintets (five-phase structure invariants) Qj by means of 

Qj = Tj + <PH,~j_, + ~on, t~fl., j = 0, 1, 2, 3, (3.8) 
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where the Hj  and Lj are defined by 

H 0 =  ½(h I + h 2 + h3) , L 0 =  ½(l~ + l 2 + 13), (3.9) 

H~ = ½(-h~ + h2 + h3), L~ = ½(--l~ +12 +13), (3.10) 

H2=½(h l -h2+h3) ,  L2=½(ll-12+13),  (3.11) 

H 3 = ½(h~ + h 2 - h3), t 3 =  ½(l, + l 2 - 13), (3.12) 

and the four integers K h j  = 0, 1, 2, 3, are arbitrary. In 
view of (3.3) the Hj and Lj are integers. Further, 
(3.2)-(3.6) imply that the Qj are structure invariants. 
It follows from (3.8) and the relations 

~0/6rjt., + tp,q?C,t,j = :Z(½-- ½ COS nKj) (3.13) 

that 
T j = Q j +  zr(½-½cos zrKi), j = 0 ,  1,2,3.(3.14) 

In view of (3.7) and (3.14), the structure seminvariant 
T o is related to the four quintets Qj by means of 

T o = Q j +  n[½-½cos l r (k :+  Kj)], j = 0 ,  1,2,3 (3.15) 

provided that k 0 is defined by 

k o = 0. (3.16) 

Because of the relation (3.15) the probabilistic theory 
of the three-phase structure seminvariant T o is made to 
depend on that of the four quintets Q:, which is well 
developed. Thus the first neighborhood of T o is defined 
to be the set-theory union of the first neighborhoods of 
the Qj, the second neighborhood of T o the set-theory 
union of the second neighborhoods of the Qj, etc. Since 
the integers K0, K~, K 2 and K 3 a r e  arbitrary, T o has 
many first neighborhoods, many second neighborhoods, 
etc. 

3.2. The first neighborhood(s) 
Following the procedure described in the preceding 

paragraphs and employing the known first neighbor- 
hood of the quintet (Hauptman, 1977b), one finds that 
the first neighborhood of T O consists of the seven 
magnitudes 

I Eh~kd tl, i = 1, 2, 3, (3.1 7) 
and 

IEI.I)6LI, j : 0, 1, 2, 3, (3.18) 

where the integers Hj and Lj are defined by (3.9)- 
(3.12) and the Kj are arbitrary integers. Thus there 
are many first neighborhoods. If the seven magnitudes 
(3.17) and (3.18) are all large then, in view of (3.15) 
and quintet theory, according as 

k j + K j i s e v e n o r o d d , j = O ,  1,2,3, (3.19) 

T o _~ 0 or zt, (3.20) 

respectively, but the relation (3.20) is relatively weak. 
A more reliable relation is obtained via the second 
neighborhood(s). 

3.3. The second neighborhood(s) 
Again, following the recipe described in § 3.1 and 

employing the known second neighborhoods of the 
quintets (Schenk, 1975; Hauptman, 1977b)one finds 
that the second neighborhood of T O consists of 41 
magnitudes, the seven magnitudes (3.17), (3.18) in the 
first neighborhood, and the additional 34 magnitudes 

IEh,+h2,k3,1~+12l, IEh_h2,kvl_121; (3.21) 

IEh2+h3,k~,12+13l, IEh2_h3,kl,12_131; (3.22) 

IEh3+hl,k2,13+t l, IEh3_h.k2,13_t l; (3.23) 
IEn,k~_+/<o./. I, IEn2.k2_+x~L21, IEn,k3_+x0./.3); (3.24) 

IEHo, k~+iq,Lol, IEH3,k2+X~,L31, IEH2,k3+_.X,L21; (3.25) 

IEn~,k~+~2,~31, IEno, k~+x~,Lo I, IEn,k3+K~,LI; (3.26) 

)En2,k,+,~,i~l, IEH~,k2+K3,~. I, IEno, k3+x3,~ol; (3.27) 

IE2nj.0.2L I, j = 0, 1, 2, 3. (3.28) 

Again the integers Hj and Lj are defined by (3.9)- 
(3.12) and the Kj are arbitrary integers, so that there 
are many second neighborhoods. 

4. The first two neighborhoods of special three-phase 
strueture seminvarlants in P21212 t 

The linear combination of three phases 

T O (Dhlktll + (Ph2k212 + ~Oh3k313 (4.1) 

is a structure seminvariant in P21212 ~ if, and only if, 

h I + h 2 + h 3 = k 1 + k 2 + k 3 

11 + l 2 + 13 ~ 0 (mod 2), (4.2) 

i.e. if, and only if, h~ + h 2 + h3, k I + k 2 + k 3 and 
l I + l 2 + 13 are even integers. One obtains a special class 
of structure seminvariants by assuming that 

k I + k 2 + k 3 = 0, an even integer. (4.3) 

In this special case the argument used in § 3 for P21 may 
be carried over without essential change to P2~2~2~, and 
one obtains as before the 7-magnitude first neighbor- 
hoods and the 41-magnitude second neighborhoods. 

By permuting the indices h, k, I one obtains two 
additional special classes of three-phase s,ructure 
seminvariants. These are derived by assuming, in 
addition to (4.2), first, that 

11 + l 2 + 13 = 0, an even integer, (4.4) 

and, second, that 

h I + h 2 ~ h 3 = 0, an even integer. (4.5) 

Thus there are in all three special classes of three-phase 
structure seminvariant, those in which (4.3) holds, 
those in which (4.4) holds, and those in which (4.5) 
holds. In each case, the first neighborhoods contain 7 
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magnitudes and the second neighborhoods contain 41 
magnitudes. Because the derivation of these neighbor- 
hoods is so similar to that given in {}3 for P2~, no 
further details for P2 ~2 z21 are given here. 

5. Concluding remarks 

By embedding a given structure seminvariant T and its 
symmetry-related variants in appropriate structure 
invariants Q, one obtains the extensions of T and in 
this way reduces the probabilistic theory of the struc- 
ture seminvariants to that of the structure invariants. 
Details have been described for the three-phase 
structure invariants in PI  and P i ,  the three-phase 
structure seminvariants in P21, and three kinds of 
special three-phase structure seminvariants in P212~21. 
The method is clearly capable of extension to the 
structure seminvariants in general. There remains the 
task of deriving the associated conditional probability 
distributions leading to estimates of the structure 
seminvariants. Because the full second neighborhoods 
often contain so many magnitudes lEt, not all of which 
may be in the observable sphere of reflections, it will in 
general be necessary to derive distributions which 
assume as known only certain subsets of these neigh- 
borhoods. Finally, it should be pointed out that the 
discriminant of the structure seminvariant, a polynomial 
in the presumed known magnitudes I EI, which is easily 
derived, easily computed and strongly correlated with 
the true value of the structure seminvariant [compare, 

for example, the discriminant for quintets (Fortier & 
Hauptman, 1977)], may often serve as a substitute for 
the true distribution, especially in those cases when 
sufficiently accurate and computable forms for the 
latter are particularly difficult or even impossible, as yet, 
to derive. 

This research was supported in part by grant No. 
CHE76-17582 from the National Science Foundation. 
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Determinantal Equations for the Scale Factor, Temperature Factors and Quantitative 
Chemical Contents of the Unit Cell 

BY R. ROTHBAUER* 
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A class of determinantal equations for the scale factor, the temperature factors and quantitative chemical 
contents of the unit cell is derived assuming non-penetrating atoms but without making use of statistical 
arguments. A new method for the determination of the scale and Debye-Waller factors is developed on the 
basis of these equations and applied to the structure factors of AI(OH)3, giving results with errors of about 
2%. 

The various methods of structure analysis require the 
knowledge of the moduli of a sufficient number of 

* Present address: Weidenstrasse II, D-6234, Hattersheim 3, 
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Fourier coefficients of the scattering density function of 
the crystal to be analysed and a more or less complete 
knowledge of the form factors of the atoms present in 
its elementary cell. 

Except for the scale factor and the temperature 


